2000 character limit reached
Super-Isolated Elliptic Curves and Abelian Surfaces in Cryptography (1705.02316v1)
Published 5 May 2017 in math.NT and cs.CR
Abstract: We call a simple abelian variety over $\mathbb{F}_p$ super-isolated if its ($\mathbb{F}_p$-rational) isogeny class contains no other varieties. The motivation for considering these varieties comes from concerns about isogeny based attacks on the discrete log problem. We heuristically estimate that the number of super-isolated elliptic curves over $\mathbb{F}_p$ with prime order and $p \leq N$, is roughly $\tilde{\Theta}(\sqrt{N})$. In contrast, we prove that there are only 2 super-isolated surfaces of cryptographic size and near-prime order.