Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multiple Instance Learning for Malware Classification (1705.02268v1)

Published 5 May 2017 in cs.CR

Abstract: This work addresses classification of unknown binaries executed in sandbox by modeling their interaction with system resources (files, mutexes, registry keys and communication with servers over the network) and error messages provided by the operating system, using vocabulary-based method from the multiple instance learning paradigm. It introduces similarities suitable for individual resource types that combined with an approximative clustering method efficiently group the system resources and define features directly from data. This approach effectively removes randomization often employed by malware authors and projects samples into low-dimensional feature space suitable for common classifiers. An extensive comparison to the state of the art on a large corpus of binaries demonstrates that the proposed solution achieves superior results using only a fraction of training samples. Moreover, it makes use of a source of information different than most of the prior art, which increases the diversity of tools detecting the malware, hence making detection evasion more difficult.

Citations (64)

Summary

We haven't generated a summary for this paper yet.