Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Techniques for improving the finite length performance of sparse superposition codes (1705.02091v4)

Published 5 May 2017 in cs.IT and math.IT

Abstract: Sparse superposition codes are a recent class of codes introduced by Barron and Joseph for efficient communication over the AWGN channel. With an appropriate power allocation, these codes have been shown to be asymptotically capacity-achieving with computationally feasible decoding. However, a direct implementation of the capacity-achieving construction does not give good finite length error performance. In this paper, we consider sparse superposition codes with approximate message passing (AMP) decoding, and describe a variety of techniques to improve their finite length performance. These include an iterative algorithm for SPARC power allocation, guidelines for choosing codebook parameters, and estimating a critical decoding parameter online instead of pre-computation. We also show how partial outer codes can be used in conjunction with AMP decoding to obtain a steep waterfall in the error performance curves. We compare the error performance of AMP-decoded sparse superposition codes with coded modulation using LDPC codes from the WiMAX standard.

Citations (34)

Summary

We haven't generated a summary for this paper yet.