Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Graph Theoretical Models of Closed n-Dimensional Manifolds: Digital Models of a Moebius Strip, a Torus, a Projective Plane a Klein Bottle and n-Dimensional Spheres (1705.01532v1)

Published 2 May 2017 in math.GT, cs.CG, and math.AT

Abstract: In this paper, we show how to construct graph theoretical models of n-dimensional continuous objects and manifolds. These models retain topological properties of their continuous counterparts. An LCL collection of n-cells in Euclidean space is introduced and investigated. If an LCL collection of n-cells is a cover of a continuous n-dimensional manifold then the intersection graph of this cover is a digital closed n-dimensional manifold with the same topology as its continuous counterpart. As an example, we prove that the digital model of a continuous n-dimensional sphere is a digital n-sphere with at least 2n+2 points, the digital model of a continuous projective plane is a digital projective plane with at least eleven points, the digital model of a continuous Klein bottle is the digital Klein bottle with at least sixteen points, the digital model of a continuous torus is the digital torus with at least sixteen points and the digital model of a continuous Moebius band is the digital Moebius band with at least twelve points.

Citations (3)

Summary

We haven't generated a summary for this paper yet.