Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Motions about a fixed point by hypergeometric functions: new non-complex analytical solutions and integration of the herpolhode (1705.01160v3)

Published 2 May 2017 in math.CA

Abstract: We study four problems in the dynamics of a body moving about a fixed point, providing a non-complex, analytical solution for all of them. For the first two, we will work on the motion first integrals. For the symmetrical heavy body, that is the Lagrange-Poisson case, we compute the second and third Euler angles in explicit and real forms by means of multiple hypergeometric functions (Lauricella, functions). Releasing the weight load but adding the complication of the asymmetry, by means of elliptic integrals of third kind, we provide the precession angle completing some previous treatments of the Euler-Poinsot case. Integrating then the relevant differential equation, we reach the finite polar equation of a special trajectory named the {\it herpolhode}. In the last problem we keep the symmetry of the first problem, but without the weight, and take into account a viscous dissipation. The approach of first integrals is no longer practicable in this situation and the Euler equations are faced directly leading to dumped goniometric functions obtained as particular occurrences of Bessel functions of order $-1/2$.

Summary

We haven't generated a summary for this paper yet.