2000 character limit reached
Polynomial bound for the nilpotency index of finitely generated nil algebras (1705.01039v3)
Published 2 May 2017 in math.RA, math.AC, and math.RT
Abstract: Working over an infinite field of positive characteristic, an upper bound is given for the nilpotency index of a finitely generated nil algebra of bounded nil index $n$ in terms of the maximal degree in a minimal homogenous generating system of the ring of simultaneous conjugation invariants of tuples of $n$ by $n$ matrices. This is deduced from a result of Zubkov. As a consequence, a recent degree bound due to Derksen and Makam for the generators of the ring of matrix invariants yields an upper bound for the nilpotency index of a finitely generated nil algebra that is polynomial in the number of generators and the nil index. Furthermore, a characteristic free treatment is given to Kuzmin's lower bound for the nilpotency index.