Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Iterative Model Reduction Scheme for Quadratic-Bilinear Descriptor Systems with an Application to Navier-Stokes Equations (1705.00934v1)

Published 2 May 2017 in math.NA and math.DS

Abstract: We discuss model reduction for a particular class of quadratic-bilinear (QB) descriptor systems. The main goal of this article is to extend the recently studied interpolation-based optimal model reduction framework for QBODEs [Benner et al. '16] to a class of descriptor systems in an efficient and reliable way. Recently, it has been shown in the case of linear or bilinear systems that a direct extension of interpolation-based model reduction techniques to descriptor systems, without any modifications, may lead to poor reduced-order systems. Therefore, for the analysis, we aim at transforming the considered QB descriptor system into an equivalent QBODE system by means of projectors for which standard model reduction techniques for QBODEs can be employed, including aforementioned interpolation scheme. Subsequently, we discuss related computational issues, thus resulting in a modified algorithm that allows us to construct \emph{near}--optimal reduced-order systems without explicitly computing the projectors used in the analysis. The efficiency of the proposed algorithm is illustrated by means of a numerical example, obtained via semi-discretization of the Navier-Stokes equations.

Summary

We haven't generated a summary for this paper yet.