Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convex-constrained Sparse Additive Modeling and Its Extensions (1705.00687v1)

Published 1 May 2017 in cs.LG and stat.ML

Abstract: Sparse additive modeling is a class of effective methods for performing high-dimensional nonparametric regression. In this work we show how shape constraints such as convexity/concavity and their extensions, can be integrated into additive models. The proposed sparse difference of convex additive models (SDCAM) can estimate most continuous functions without any a priori smoothness assumption. Motivated by a characterization of difference of convex functions, our method incorporates a natural regularization functional to avoid overfitting and to reduce model complexity. Computationally, we develop an efficient backfitting algorithm with linear per-iteration complexity. Experiments on both synthetic and real data verify that our method is competitive against state-of-the-art sparse additive models, with improved performance in most scenarios.

Citations (3)

Summary

We haven't generated a summary for this paper yet.