Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards well-specified semi-supervised model-based classifiers via structural adaptation (1705.00597v1)

Published 1 May 2017 in cs.LG and cs.AI

Abstract: Semi-supervised learning plays an important role in large-scale machine learning. Properly using additional unlabeled data (largely available nowadays) often can improve the machine learning accuracy. However, if the machine learning model is misspecified for the underlying true data distribution, the model performance could be seriously jeopardized. This issue is known as model misspecification. To address this issue, we focus on generative models and propose a criterion to detect the onset of model misspecification by measuring the performance difference between models obtained using supervised and semi-supervised learning. Then, we propose to automatically modify the generative models during model training to achieve an unbiased generative model. Rigorous experiments were carried out to evaluate the proposed method using two image classification data sets PASCAL VOC'07 and MIR Flickr. Our proposed method has been demonstrated to outperform a number of state-of-the-art semi-supervised learning approaches for the classification task.

Summary

We haven't generated a summary for this paper yet.