Large deviations for the dynamic $Φ^{2n}_d$ model
Abstract: We are dealing with the validity of a large deviation principle for a class of reaction-diffusion equations with polynomial nonlinearity, perturbed by a Gaussian random forcing. We are here interested in the regime where both the strength of the noise and its correlation are vanishing, on a length scale $\epsilon$ and $\delta(\epsilon)$, respectively, with $0<\epsilon,\delta(\epsilon)<<1$. We prove that, under the assumption that $\epsilon$ and $\delta(\epsilon)$ satisfy a suitable scaling limit, a large deviation principle holds in the space of continuous trajectories with values both in the space of square-integrable functions and in Sobolev spaces of negative exponent. Our result is valid, without any restriction on the degree of the polynomial nor on the space dimension.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.