Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Large deviations for the dynamic $Φ^{2n}_d$ model (1705.00541v1)

Published 1 May 2017 in math.PR

Abstract: We are dealing with the validity of a large deviation principle for a class of reaction-diffusion equations with polynomial nonlinearity, perturbed by a Gaussian random forcing. We are here interested in the regime where both the strength of the noise and its correlation are vanishing, on a length scale $\epsilon$ and $\delta(\epsilon)$, respectively, with $0<\epsilon,\delta(\epsilon)<<1$. We prove that, under the assumption that $\epsilon$ and $\delta(\epsilon)$ satisfy a suitable scaling limit, a large deviation principle holds in the space of continuous trajectories with values both in the space of square-integrable functions and in Sobolev spaces of negative exponent. Our result is valid, without any restriction on the degree of the polynomial nor on the space dimension.

Summary

We haven't generated a summary for this paper yet.