Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Transformations between nonlocal and local integrable equations (1705.00332v1)

Published 30 Apr 2017 in nlin.PS

Abstract: Recently, a number of nonlocal integrable equations, such as the PT-symmetric nonlinear Schrodinger (NLS) equation and PT-symmetric Davey-Stewartson equations, were proposed and studied. Here we show that many of such nonlocal integrable equations can be converted to local integrable equations through simple variable transformations. Examples include these nonlocal NLS and Davey-Stewartson equations, a nonlocal derivative NLS equation, the reverse space-time complex modified Korteweg-de Vries (CMKdV) equation, and many others. These transformations not only establish immediately the integrability of these nonlocal equations, but also allow us to construct their analytical solutions from solutions of the local equations. These transformations can also be used to derive new nonlocal integrable equations. As applications of these transformations, we use them to derive rogue wave solutions for the partially PT-symmetric Davey-Stewartson equations and the nonlocal derivative NLS equation. In addition, we use them to derive multi-soliton and quasi-periodic solutions in the reverse space-time CMKdV equation. Furthermore, we use them to construct many new nonlocal integrable equations such as nonlocal short pulse equations, nonlocal nonlinear diffusion equations, and nonlocal Sasa-Satsuma equations.

Summary

We haven't generated a summary for this paper yet.