Papers
Topics
Authors
Recent
2000 character limit reached

A universal tree balancing theorem

Published 27 Apr 2017 in cs.CC | (1704.08705v3)

Abstract: We present a general framework for balancing expressions (terms) in form of so called tree straight-line programs. The latter can be seen as circuits over the free term algebra extended by contexts (terms with a hole) and the operations which insert terms/contexts into contexts. It is shown that for every term one can compute in DLOGTIME-uniform TC$0$ a tree straight-line program of logarithmic depth and size $O(n/\log n)$. This allows reducing the term evaluation problem over an arbitrary algebra $\mathcal{A}$ to the term evaluation problem over a derived two-sorted algebra $\mathcal{F}(\mathcal{A})$. Several applications are presented: (i) an alternative proof for a recent result by Krebs, Limaye and Ludwig on the expression evaluation problem is given, (ii) it is shown that expressions for an arbitrary (possibly non-commutative) semiring can be transformed in DLOGTIME-uniform TC$0$ into equivalent circuits of logarithmic depth and size $O(n/\log n)$, and (iii) a corresponding result for regular expressions is shown.

Citations (7)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.