Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A new truncated $M$-fractional derivative type unifying some fractional derivative types with classical properties (1704.08187v4)

Published 14 Apr 2017 in math.CA

Abstract: We introduce a truncated $M$-fractional derivative type for $\alpha$-differentiable functions that generalizes four other fractional derivatives types recently introduced by Khalil et al., Katugampola and Sousa et al., the so-called conformable fractional derivative, alternative fractional derivative, generalized alternative fractional derivative and $M$-fractional derivative, respectively. We denote this new differential operator by ${i}\mathscr{D}{M}{\alpha,\beta }$, where the parameter $\alpha$, associated with the order of the derivative is such that $ 0 <\alpha<1 $, $\beta>0$ and $ M $ is the notation to designate that the function to be derived involves the truncated Mittag-Leffler function with one parameter. The definition of this truncated $M$-fractional derivative type satisfies the properties of the integer-order calculus. We also present, the respective fractional integral from which emerges, as a natural consequence, the result, which can be interpreted as an inverse property. Finally, we obtain the analytical solution of the $M$-fractional heat equation and present a graphical analysis.

Summary

We haven't generated a summary for this paper yet.