Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bootstrap-Based Inference for Cube Root Asymptotics (1704.08066v3)

Published 26 Apr 2017 in math.ST, econ.EM, stat.ME, and stat.TH

Abstract: This paper proposes a valid bootstrap-based distributional approximation for M-estimators exhibiting a Chernoff (1964)-type limiting distribution. For estimators of this kind, the standard nonparametric bootstrap is inconsistent. The method proposed herein is based on the nonparametric bootstrap, but restores consistency by altering the shape of the criterion function defining the estimator whose distribution we seek to approximate. This modification leads to a generic and easy-to-implement resampling method for inference that is conceptually distinct from other available distributional approximations. We illustrate the applicability of our results with four examples in econometrics and machine learning.

Summary

We haven't generated a summary for this paper yet.