Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Carleson measures, BMO spaces and balayages associated to Schrodinger operators (1704.07997v1)

Published 26 Apr 2017 in math.AP

Abstract: Let $\L$ be a Schr\"odinger operator of the form $\L=-\Delta+V$ acting on $L2(\mathbb Rn)$, $n\geq3$, where the nonnegative potential $V$ belongs to the reverse H\"older class $B_q$ for some $q\geq n.$ Let ${\rm BMO}{{\mathcal{L}}}(\RR)$ denote the BMO space associated to the Schr\"odinger operator $\L$ on $\RR$. In this article we show that for every $f\in {\rm BMO}{\mathcal{L}}(\RR)$ with compact support, then there exist $g\in L{\infty}(\RR)$ and a finite Carleson measure $\mu$ such that $$ f(x)=g(x) + S_{\mu, {\mathcal P}}(x) $$ with $|g|{\infty} +||\mu||{c}\leq C |f|{{\rm BMO}{\mathcal{L}}(\RR)},$ where $$ S_{\mu, {\mathcal P}}=\int_{{\mathbb R}{n+1}_+} {\mathcal P}t(x,y) d\mu(y, t), $$ and ${\mathcal P}_t(x,y)$ is the kernel of the Poisson semigroup ${e{-t\sqrt{\L}}}{t> 0} $ on $L2(\mathbb Rn)$. Conversely, if $\mu$ is a Carleson measure, then $S_{\mu, {\mathcal P}}$ belongs to the space ${\rm BMO}_{{\mathcal{L}}}(\RR)$. This extends the result for the classical John--Nirenberg BMO space by Carleson \cite{C} (see also \cite{U,GJ,W}) to the BMO setting associated to Schr\"odinger operators.

Summary

We haven't generated a summary for this paper yet.