Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Notes on $G_2$: The Lie algebra and the Lie group (1704.07819v2)

Published 25 Apr 2017 in math.RA and math.DG

Abstract: These notes have been prepared for the Workshop on "(Non)-existence of complex structures on $\mathbb{S}6$", to be celebrated in Marburg in March, 2017. The material is not intended to be original. It contains a survey about the smallest of the exceptional Lie groups: $G_2$, its definition and different characterizations joint with its relationship with $\mathbb{S}6$ and with $\mathbb{S}7$. With the exception of the summary of the Killing-Cartan classification, this survey is self-contained, and all the proofs are given, mainly following linear algebra arguments. Although these proofs are well-known, they are spread and some of them are difficult to find. The approach is algebraical, working at the Lie algebra level most of times. We analyze the complex Lie algebra (and group) of type $G_2$ as well as the two real Lie algebras of type $G_2$, the split and the compact one. Octonions will appear, but it is not the starting point. Also, 3-forms approach and spinorial approach are viewed and related.

Summary

We haven't generated a summary for this paper yet.