A Convex Approach to Steady State Moment Analysis for Stochastic Chemical Reactions (1704.07722v2)
Abstract: Model-based prediction of stochastic noise in biomolecular reactions often resorts to approximation with unknown precision. As a result, unexpected stochastic fluctuation causes a headache for the designers of biomolecular circuits. This paper proposes a convex optimization approach to quantifying the steady state moments of molecular copy counts with theoretical rigor. We show that the stochastic moments lie in a convex semi-algebraic set specified by linear matrix inequalities. Thus, the upper and the lower bounds of some moments can be computed by a semidefinite program. Using a protein dimerization process as an example, we demonstrate that the proposed method can precisely predict the mean and the variance of the copy number of the monomer protein.
- Yuta Sakurai (3 papers)
- Yutaka Hori (23 papers)