Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An ADMM Approach to Masked Signal Decomposition Using Subspace Representation (1704.07711v2)

Published 25 Apr 2017 in cs.CV

Abstract: Signal decomposition is a classical problem in signal processing, which aims to separate an observed signal into two or more components each with its own property. Usually each component is described by its own subspace or dictionary. Extensive research has been done for the case where the components are additive, but in real world applications, the components are often non-additive. For example, an image may consist of a foreground object overlaid on a background, where each pixel either belongs to the foreground or the background. In such a situation, to separate signal components, we need to find a binary mask which shows the location of each component. Therefore it requires to solve a binary optimization problem. Since most of the binary optimization problems are intractable, we relax this problem to the approximated continuous problem, and solve it by alternating optimization technique. We show the application of the proposed algorithm for three applications: separation of text from background in images, separation of moving objects from a background undergoing global camera motion in videos, separation of sinusoidal and spike components in one dimensional signals. We demonstrate in each case that considering the non-additive nature of the problem can lead to significant improvement.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Shervin Minaee (51 papers)
  2. Yao Wang (331 papers)
Citations (12)

Summary

We haven't generated a summary for this paper yet.