Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Algebraic orthogonality and commuting projections in operator algebras (1704.07631v2)

Published 25 Apr 2017 in math.FA

Abstract: We describe absolutely ordered $p$-normed spaces, for $1 \le p \le \infty$ which presents a model for "non-commutative" vector lattices and includes order theoretic orthogonality. To demonstrate its relevance, we introduce the notion of {\it absolute compatibility} among positive elements in absolute order unit spaces and relate it to symmetrized product in the case of a C${\ast}$-algebra. In the latter case, whenever one of the elements is a projection, the elements are absolutely compatible if and only if they commute. We develop an order theoretic prototype of the results. For this purpose, we introduce the notion of {\it order projections} and extend the results related to projections in a unital C${\ast}$-algebra to order projections in an absolute order unit space. As an application, we describe spectral decomposition theory for elements of an absolute order unit space.

Summary

We haven't generated a summary for this paper yet.