Papers
Topics
Authors
Recent
Search
2000 character limit reached

A hybridizable discontinuous Galerkin method for the Navier--Stokes equations with pointwise divergence-free velocity field

Published 25 Apr 2017 in math.NA, cs.CE, and physics.flu-dyn | (1704.07569v2)

Abstract: We introduce a hybridizable discontinuous Galerkin method for the incompressible Navier--Stokes equations for which the approximate velocity field is pointwise divergence-free. The method builds on the method presented by Labeur and Wells [SIAM J. Sci. Comput., vol. 34 (2012), pp. A889--A913]. We show that with modifications of the function spaces in the method of Labeur and Wells it is possible to formulate a simple method with pointwise divergence-free velocity fields which is momentum conserving, energy stable, and pressure-robust. Theoretical results are supported by two- and three-dimensional numerical examples and for different orders of polynomial approximation.

Citations (91)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.