Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Covering Uncertain Points in a Tree (1704.07497v1)

Published 24 Apr 2017 in cs.CG and cs.DS

Abstract: In this paper, we consider a coverage problem for uncertain points in a tree. Let T be a tree containing a set P of n (weighted) demand points, and the location of each demand point P_i\in P is uncertain but is known to appear in one of m_i points on T each associated with a probability. Given a covering range \lambda, the problem is to find a minimum number of points (called centers) on T to build facilities for serving (or covering) these demand points in the sense that for each uncertain point P_i\in P, the expected distance from P_i to at least one center is no more than $\lambda$. The problem has not been studied before. We present an O(|T|+M\log2 M) time algorithm for the problem, where |T| is the number of vertices of T and M is the total number of locations of all uncertain points of P, i.e., M=\sum_{P_i\in P}m_i. In addition, by using this algorithm, we solve a k-center problem on T for the uncertain points of P.

Citations (6)

Summary

We haven't generated a summary for this paper yet.