Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Recognizing Descriptive Wikipedia Categories for Historical Figures (1704.07427v1)

Published 24 Apr 2017 in cs.CL

Abstract: Wikipedia is a useful knowledge source that benefits many applications in language processing and knowledge representation. An important feature of Wikipedia is that of categories. Wikipedia pages are assigned different categories according to their contents as human-annotated labels which can be used in information retrieval, ad hoc search improvements, entity ranking and tag recommendations. However, important pages are usually assigned too many categories, which makes it difficult to recognize the most important ones that give the best descriptions. In this paper, we propose an approach to recognize the most descriptive Wikipedia categories. We observe that historical figures in a precise category presumably are mutually similar and such categorical coherence could be evaluated via texts or Wikipedia links of corresponding members in the category. We rank descriptive level of Wikipedia categories according to their coherence and our ranking yield an overall agreement of 88.27% compared with human wisdom.

Summary

We haven't generated a summary for this paper yet.