On doubly nonlocal $p$-fractional coupled elliptic system (1704.06908v1)
Abstract: \noi We study the following nonlinear system with perturbations involving p-fractional Laplacian \begin{equation*} (P)\left{ \begin{split} (-\De)s_p u+ a_1(x)u|u|{p-2} &= \alpha(|x|{-\mu}*|u|q)|u|{q-2}u+ \beta (|x|{-\mu}*|v|q)|u|{q-2}u+ f_1(x)\; \text{in}\; \mb Rn,\ (-\De)s_p v+ a_2(x)v|v|{p-2} &= \gamma(|x|{-\mu}*|v|q)|v|{q-2}v+ \beta (|x|{-\mu}*|u|q)|v|{q-2}v+ f_2(x)\; \text{in}\; \mb Rn, \end{split} \right. \end{equation*} where $n>sp$, $0<s\<1$, $p\geq2$, $\mu \in (0,n)$, $\frac{p}{2}\left( 2-\frac{\mu}{n}\right) < q <\frac{p^*_s}{2}\left( 2-\frac{\mu}{n}\right)$, $\alpha,\beta,\gamma \>0$, $0< a_i \in C1(\mb Rn, \mb R)$, $i=1,2$ and $f_1,f_2: \mb Rn \to \mb R$ are perturbations. We show existence of atleast two nontrivial solutions for $(P)$ using Nehari manifold and minimax methods.