Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Algorithms for Covering Multiple Barriers (1704.06870v3)

Published 23 Apr 2017 in cs.CG and cs.DS

Abstract: In this paper, we consider the problems for covering multiple intervals on a line. Given a set $B$ of $m$ line segments (called "barriers") on a horizontal line $L$ and another set $S$ of $n$ horizontal line segments of the same length in the plane, we want to move all segments of $S$ to $L$ so that their union covers all barriers and the maximum movement of all segments of $S$ is minimized. Previously, an $O(n3\log n)$-time algorithm was given for the case $m=1$. In this paper, we propose an $O(n2\log n\log \log n+nm\log m)$-time algorithm for a more general setting with any $m\geq 1$, which also improves the previous work when $m=1$. We then consider a line-constrained version of the problem in which the segments of $S$ are all initially on the line $L$. Previously, an $O(n\log n)$-time algorithm was known for the case $m=1$. We present an algorithm of $O(m\log m+n\log m \log n)$ time for any $m\geq 1$. These problems may have applications in mobile sensor barrier coverage in wireless sensor networks.

Citations (2)

Summary

We haven't generated a summary for this paper yet.