Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lexical Features in Coreference Resolution: To be Used With Caution (1704.06779v1)

Published 22 Apr 2017 in cs.CL

Abstract: Lexical features are a major source of information in state-of-the-art coreference resolvers. Lexical features implicitly model some of the linguistic phenomena at a fine granularity level. They are especially useful for representing the context of mentions. In this paper we investigate a drawback of using many lexical features in state-of-the-art coreference resolvers. We show that if coreference resolvers mainly rely on lexical features, they can hardly generalize to unseen domains. Furthermore, we show that the current coreference resolution evaluation is clearly flawed by only evaluating on a specific split of a specific dataset in which there is a notable overlap between the training, development and test sets.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Nafise Sadat Moosavi (38 papers)
  2. Michael Strube (26 papers)
Citations (36)