Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Model order reduction for stochastic dynamical systems with continuous symmetries (1704.06352v2)

Published 20 Apr 2017 in physics.comp-ph, math.DS, physics.data-an, and physics.flu-dyn

Abstract: Stochastic dynamical systems with continuous symmetries arise commonly in nature and often give rise to coherent spatio-temporal patterns. However, because of their random locations, these patterns are not well captured by current order reduction techniques and a large number of modes is typically necessary for an accurate solution. In this work, we introduce a new methodology for efficient order reduction of such systems by combining (i) the method of slices, a symmetry reduction tool, with (ii) any standard order reduction technique, resulting in efficient mixed symmetry-dimensionality reduction schemes. In particular, using the Dynamically Orthogonal (DO) equations in the second step, we obtain a novel nonlinear Symmetry-reduced Dynamically Orthogonal (SDO) scheme. We demonstrate the performance of the SDO scheme on stochastic solutions of the 1D Korteweg-de Vries and 2D Navier-Stokes equations.

Summary

We haven't generated a summary for this paper yet.