On the gonality, treewidth, and orientable genus of a graph
Abstract: We examine connections between the gonality, treewidth, and orientable genus of a graph. Especially, we find that hyperelliptic graphs in the sense of Baker and Norine are planar. We give a notion of a bielliptic graph and show that each of these must embed into a closed orientable surface of genus one. We also find, for all $g\ge 0$, trigonal graphs of treewidth 3 and orientable genus $g$, and give analogues for graphs of higher gonality.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.