Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Finite generation of the numerical Grothendieck group (1704.06252v1)

Published 20 Apr 2017 in math.AG, math.AT, math.KT, and math.RT

Abstract: Let k be a finite base field. In this note, making use of topological periodic cyclic homology and of the theory of noncommutative motives, we prove that the numerical Grothendieck group of every smooth proper dg k-linear category is a finitely generated free abelian group. Along the way, we prove moreover that the category of noncommutative numerical motives over k is abelian semi-simple, as conjectured by Kontsevich. Furthermore, we show that the zeta functions of endomorphisms of noncommutative Chow motives are rational and satisfy a functional equation.

Summary

We haven't generated a summary for this paper yet.