Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Matrix Factorisations Arising From Well-Generated Complex Reflection Groups (1704.05966v2)

Published 20 Apr 2017 in math.RA, math.AC, and math.AT

Abstract: We discuss an interesting duality known to occur for certain complex reflection groups, namely the duality groups. Our main construction yields a concrete, representation theoretic realisation of this duality. This allows us to naturally identify invariant vector fields with vector fields on the orbit space, for the action of a duality group. As another application, we construct matrix factorisations of the highest degree basic invariant which give free resolutions of the module of K\"{a}hler differentials of the coinvariant algebra $A$ associated to such a reflection group. From this one can explicitly calculate the dimension of each graded piece of $\Omega_{A/\mathbb{C}}$ and of ${\rm Der}_{\mathbb{C}}(A,A)$, adding a new formula to the numerology of reflection groups. This applies for instance when $A$ is the cohomology of any complete flag manifold, and hence has geometric consequences.

Summary

We haven't generated a summary for this paper yet.