Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hall's Conjecture on Extremal Sets for Random Triangles (1704.05913v4)

Published 19 Apr 2017 in math.PR

Abstract: In this paper we partially resolve Hall's conjecture about the distribution of random triangles. We consider the probability that three points chosen uniformly at random, in a bounded convex region of the plane, form an acute triangle. Hall's conjecture is the "isoprobabilistic inequality" which states that this probability should be maximized by the disk. We first prove that the disk is a weak local maximum for planar regions and that the ball is a weak local maximum in three dimensional regions. We then prove a local $C{2,1/2}$-type estimate on the probability in the Hausdorff topology. This enables us to prove that the disk is a local maximum in the Gromov-Hausdorff topology (modulo congruences). Finally, we give an explicit upper bound on the isoperimetric ratio of the regions which maximize the probability and show how this reduces verifying the full conjecture to a finite, though currently intractable, calculation. An interesting aspect of our work is the use of tools from outside of geometric probability. We use an autocorrelation integral to provide the appropriate framework for the problem. When we study the problem in $\mathbb{R}3$, we need non-Abelian harmonic analysis. To set up the proof that the disk is a strong local maximum, we use the Borsak-Ulam theorem.

Summary

We haven't generated a summary for this paper yet.