Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CNN based music emotion classification (1704.05665v1)

Published 19 Apr 2017 in cs.MM and cs.LG

Abstract: Music emotion recognition (MER) is usually regarded as a multi-label tagging task, and each segment of music can inspire specific emotion tags. Most researchers extract acoustic features from music and explore the relations between these features and their corresponding emotion tags. Considering the inconsistency of emotions inspired by the same music segment for human beings, seeking for the key acoustic features that really affect on emotions is really a challenging task. In this paper, we propose a novel MER method by using deep convolutional neural network (CNN) on the music spectrograms that contains both the original time and frequency domain information. By the proposed method, no additional effort on extracting specific features required, which is left to the training procedure of the CNN model. Experiments are conducted on the standard CAL500 and CAL500exp dataset. Results show that, for both datasets, the proposed method outperforms state-of-the-art methods.

Citations (40)

Summary

We haven't generated a summary for this paper yet.