Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generalised least squares estimation of regularly varying space-time processes based on flexible observation schemes (1704.05656v2)

Published 19 Apr 2017 in math.ST and stat.TH

Abstract: Regularly varying stochastic processes model extreme dependence between process values at different locations and/or time points. For such processes we propose a two-step parameter estimation of the extremogram, when some part of the domain of interest is fixed and another increasing. We provide conditions for consistency and asymptotic normality of the empirical extremogram centred by a pre-asymptotic version for such observation schemes. For max-stable processes with Fr{\'e}chet margins we provide conditions, such that the empirical extremogram (or a bias-corrected version) centred by its true version is asymptotically normal. In a second step, for a parametric extremogram model, we fit the parameters by generalised least squares estimation and prove consistency and asymptotic normality of the estimates. We propose subsampling procedures to obtain asymptotically correct confidence intervals. Finally, we apply our results to a variety of Brown-Resnick processes. A simulation study shows that the procedure works well also for moderate sample sizes.

Summary

We haven't generated a summary for this paper yet.