Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Effects of the optimisation of the margin distribution on generalisation in deep architectures (1704.05646v1)

Published 19 Apr 2017 in cs.LG

Abstract: Despite being so vital to success of Support Vector Machines, the principle of separating margin maximisation is not used in deep learning. We show that minimisation of margin variance and not maximisation of the margin is more suitable for improving generalisation in deep architectures. We propose the Halfway loss function that minimises the Normalised Margin Variance (NMV) at the output of a deep learning models and evaluate its performance against the Softmax Cross-Entropy loss on the MNIST, smallNORB and CIFAR-10 datasets.

Summary

We haven't generated a summary for this paper yet.