Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Probabilistic $N$-$k$ Failure-Identification for Power Systems (1704.05391v9)

Published 18 Apr 2017 in cs.SY

Abstract: This paper considers a probabilistic generalization of the $N$-$k$ failure-identification problem in power transmission networks, where the probability of failure of each component in the network is known a priori and the goal of the problem is to find a set of $k$ components that maximizes disruption to the system loads weighted by the probability of simultaneous failure of the $k$ components. The resulting problem is formulated as a bilevel mixed-integer nonlinear program. Convex relaxations, linear approximations, and heuristics are developed to obtain feasible solutions that are close to the optimum. A general cutting-plane algorithm is proposed to solve the convex relaxation and linear approximations of the $N$-$k$ problem. Extensive numerical results corroborate the effectiveness of the proposed algorithms on small-, medium-, and large-scale test instances, the test instances include the IEEE 14-bus system, the IEEE single-area and three-area RTS96 systems, the IEEE 118-bus system, the WECC 240-bus test system, the 1354-bus PEGASE system, and the 2383-bus Polish winter-peak test system.

Citations (31)

Summary

We haven't generated a summary for this paper yet.