Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fooling intersections of low-weight halfspaces (1704.04855v1)

Published 17 Apr 2017 in cs.CC

Abstract: A weight-$t$ halfspace is a Boolean function $f(x)=$sign$(w_1 x_1 + \cdots + w_n x_n - \theta)$ where each $w_i$ is an integer in ${-t,\dots,t}.$ We give an explicit pseudorandom generator that $\delta$-fools any intersection of $k$ weight-$t$ halfspaces with seed length poly$(\log n, \log k,t,1/\delta)$. In particular, our result gives an explicit PRG that fools any intersection of any quasipoly$(n)$ number of halfspaces of any poly$\log(n)$ weight to any $1/$poly$\log(n)$ accuracy using seed length poly$\log(n).$ Prior to this work no explicit PRG with non-trivial seed length was known even for fooling intersections of $n$ weight-1 halfspaces to constant accuracy. The analysis of our PRG fuses techniques from two different lines of work on unconditional pseudorandomness for different kinds of Boolean functions. We extend the approach of Harsha, Klivans and Meka \cite{HKM12} for fooling intersections of regular halfspaces, and combine this approach with results of Bazzi \cite{Bazzi:07} and Razborov \cite{Razborov:09} on bounded independence fooling CNF formulas. Our analysis introduces new coupling-based ingredients into the standard Lindeberg method for establishing quantitative central limit theorems and associated pseudorandomness results.

Citations (8)

Summary

We haven't generated a summary for this paper yet.