Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Generalized Bellman Equations and Temporal-Difference Learning (1704.04463v2)

Published 14 Apr 2017 in cs.LG and math.OC

Abstract: We consider off-policy temporal-difference (TD) learning in discounted Markov decision processes, where the goal is to evaluate a policy in a model-free way by using observations of a state process generated without executing the policy. To curb the high variance issue in off-policy TD learning, we propose a new scheme of setting the $\lambda$-parameters of TD, based on generalized BeLLMan equations. Our scheme is to set $\lambda$ according to the eligibility trace iterates calculated in TD, thereby easily keeping these traces in a desired bounded range. Compared with prior work, this scheme is more direct and flexible, and allows much larger $\lambda$ values for off-policy TD learning with bounded traces. As to its soundness, using Markov chain theory, we prove the ergodicity of the joint state-trace process under nonrestrictive conditions, and we show that associated with our scheme is a generalized BeLLMan equation (for the policy to be evaluated) that depends on both the evolution of $\lambda$ and the unique invariant probability measure of the state-trace process. These results not only lead immediately to a characterization of the convergence behavior of least-squares based implementation of our scheme, but also prepare the ground for further analysis of gradient-based implementations.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Huizhen Yu (22 papers)
  2. A. Rupam Mahmood (37 papers)
  3. Richard S. Sutton (65 papers)
Citations (27)

Summary

We haven't generated a summary for this paper yet.