Concentration phenomena for critical fractional Schrödinger systems (1704.04391v3)
Abstract: In this paper we study the existence, multiplicity and concentration behavior of solutions for the following critical fractional Schr\"odinger system \begin{equation*} \left{ \begin{array}{ll} \varepsilon{2s} (-\Delta){s}u+V(x) u=Q_{u}(u, v)+\frac{1}{2{*}{s}}K{u}(u, v) &\mbox{ in } \mathbb{R}{N}\varepsilon{2s} (-\Delta){s}u+W(x) v=Q_{v}(u, v)+\frac{1}{2{*}{s}}K{v}(u, v) &\mbox{ in } \mathbb{R}{N} u, v>0 &\mbox{ in } \R{N}, \end{array} \right. \end{equation*} where $\varepsilon>0$ is a parameter, $s\in (0, 1)$, $N>2s$, $(-\Delta){s}$ is the fractional Laplacian operator, $V:\mathbb{R}{N}\rightarrow \mathbb{R}$ and $W:\mathbb{R}{N}\rightarrow \mathbb{R}$ are positive H\"older continuous potentials, $Q$ and $K$ are homogeneous $C{2}$-functions having subcritical and critical growth respectively. We relate the number of solutions with the topology of the set where the potentials $V$ and $W$ attain their minimum values. The proofs rely on the Ljusternik-Schnirelmann theory and variational methods.