Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Contractive Approach to Separable Lyapunov Functions for Monotone Systems (1704.04218v2)

Published 13 Apr 2017 in cs.SY

Abstract: Monotone systems preserve a partial ordering of states along system trajectories and are often amenable to separable Lyapunov functions that are either the sum or the maximum of a collection of functions of a scalar argument. In this paper, we consider constructing separable Lyapunov functions for monotone systems that are also contractive, that is, the distance between any pair of trajectories exponentially decreases. The distance is defined in terms of a possibly state-dependent norm. When this norm is a weighted one-norm, we obtain conditions which lead to sum-separable Lyapunov functions, and when this norm is a weighted infinity-norm, symmetric conditions lead to max-separable Lyapunov functions. In addition, we consider two classes of Lyapunov functions: the first class is separable along the system's state, and the second class is separable along components of the system's vector field. The latter case is advantageous for many practically motivated systems for which it is difficult to measure the system's state but easier to measure the system's velocity or rate of change. In addition, we present an algorithm based on sum-of-squares programming to compute such separable Lyapunov functions. We provide several examples to demonstrate our results.

Citations (42)

Summary

We haven't generated a summary for this paper yet.