Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Underapproximation of Reach-Avoid Sets for Discrete-Time Stochastic Systems via Lagrangian Methods (1704.03555v1)

Published 11 Apr 2017 in cs.SY and math.OC

Abstract: We examine Lagrangian techniques for computing underapproximations of finite-time horizon, stochastic reach-avoid level-sets for discrete-time, nonlinear systems. We use the concept of reachability of a target tube in the control literature to define robust reach-avoid sets which are parameterized by the target set, safe set, and the set in which the disturbance is drawn from. We unify two existing Lagrangian approaches to compute these sets and establish that there exists an optimal control policy of the robust reach-avoid sets which is a Markov policy. Based on these results, we characterize the subset of the disturbance space whose corresponding robust reach-avoid set for the given target and safe set is a guaranteed underapproximation of the stochastic reach-avoid level-set of interest. The proposed approach dramatically improves the computational efficiency for obtaining an underapproximation of stochastic reach-avoid level-sets when compared to the traditional approaches based on gridding. Our method, while conservative, does not rely on a grid, implying scalability as permitted by the known computational geometry constraints. We demonstrate the method on two examples: a simple two-dimensional integrator, and a space vehicle rendezvous-docking problem.

Citations (32)

Summary

We haven't generated a summary for this paper yet.