Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Parametric Gaussian Process Regression for Big Data (1704.03144v2)

Published 11 Apr 2017 in stat.ML and cs.LG

Abstract: This work introduces the concept of parametric Gaussian processes (PGPs), which is built upon the seemingly self-contradictory idea of making Gaussian processes parametric. Parametric Gaussian processes, by construction, are designed to operate in "big data" regimes where one is interested in quantifying the uncertainty associated with noisy data. The proposed methodology circumvents the well-established need for stochastic variational inference, a scalable algorithm for approximating posterior distributions. The effectiveness of the proposed approach is demonstrated using an illustrative example with simulated data and a benchmark dataset in the airline industry with approximately 6 million records.

Citations (39)

Summary

We haven't generated a summary for this paper yet.