Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Large-scale distributed Kalman filtering via an optimization approach (1704.03125v1)

Published 11 Apr 2017 in math.OC

Abstract: Large-scale distributed systems such as sensor networks, often need to achieve filtering and consensus on an estimated parameter from high-dimensional measurements. Running a Kalman filter on every node in such a network is computationally intensive; in particular the matrix inversion in the Kalman gain update step is expensive. In this paper, we extend previous results in distributed Kalman filtering and large-scale machine learning to propose a gradient descent step for updating an estimate of the error covariance matrix; this is then embedded and analyzed in the context of distributed Kalman filtering. We provide properties of the resulting filters, in addition to a number of applications throughout the paper.

Summary

We haven't generated a summary for this paper yet.