Papers
Topics
Authors
Recent
Search
2000 character limit reached

Counting $G$-Extensions by Discriminant

Published 11 Apr 2017 in math.NT | (1704.03124v2)

Abstract: The problem of analyzing the number of number field extensions $L/K$ with bounded (relative) discriminant has been the subject of renewed interest in recent years, with significant advances made by Schmidt, Ellenberg-Venkatesh, Bhargava, Bhargava-Shankar-Wang, and others. In this paper, we use the geometry of numbers and invariant theory of finite groups, in a manner similar to Ellenberg and Venkatesh, to give an upper bound on the number of extensions $L/K$ with fixed degree, bounded relative discriminant, and specified Galois closure.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.