Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Largest eigenvalues of sparse inhomogeneous Erdős-Rényi graphs (1704.02953v1)

Published 10 Apr 2017 in math.PR

Abstract: We consider inhomogeneous Erd\H{o}s-R\'enyi graphs. We suppose that the maximal mean degree $d$ satisfies $d \ll \log n$. We characterize the asymptotic behavior of the $n{1 - o(1)}$ largest eigenvalues of the adjacency matrix and its centred version. We prove that these extreme eigenvalues are governed at first order by the largest degrees and, for the adjacency matrix, by the nonzero eigenvalues of the expectation matrix. Our results show that the extreme eigenvalues exhibit a novel behaviour which in particular rules out their convergence to a nondegenerate point process. Together with the companion paper [3], where we analyse the extreme eigenvalues in the complementary regime $d \gg \log n$, this establishes a crossover in the behaviour of the extreme eigenvalues around $d \sim \log n$. Our proof relies on a new tail estimate for the Poisson approximation of an inhomogeneous sum of independent Bernoulli random variables, as well as on an estimate on the operator norm of a pruned graph due to Le, Levina, and Vershynin.

Summary

We haven't generated a summary for this paper yet.