Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The average size of the kernel of a matrix and orbits of linear groups (1704.02668v2)

Published 9 Apr 2017 in math.NT, math.CO, math.GR, and math.RA

Abstract: Let $\mathfrak{O}$ be a compact discrete valuation ring of characteristic zero. Given a module $M$ of matrices over $\mathfrak{O}$, we study the generating function encoding the average sizes of the kernels of the elements of $M$ over finite quotients of $\mathfrak{O}$. We prove rationality and establish fundamental properties of these generating functions and determine them explicitly for various natural families of modules $M$. Using $p$-adic Lie theory, we then show that special cases of these generating functions enumerate orbits and conjugacy classes of suitable linear pro-$p$ groups.

Summary

We haven't generated a summary for this paper yet.