Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Three-Dimensional Segmentation of Vesicular Networks of Fungal Hyphae in Macroscopic Microscopy Image Stacks (1704.02356v1)

Published 7 Apr 2017 in cs.CV

Abstract: Automating the extraction and quantification of features from three-dimensional (3-D) image stacks is a critical task for advancing computer vision research. The union of 3-D image acquisition and analysis enables the quantification of biological resistance of a plant tissue to fungal infection through the analysis of attributes such as fungal penetration depth, fungal mass, and branching of the fungal network of connected cells. From an image processing perspective, these tasks reduce to segmentation of vessel-like structures and the extraction of features from their skeletonization. In order to sample multiple infection events for analysis, we have developed an approach we refer to as macroscopic microscopy. However, macroscopic microscopy produces high-resolution image stacks that pose challenges to routine approaches and are difficult for a human to annotate to obtain ground truth data. We present a synthetic hyphal network generator, a comparison of several vessel segmentation methods, and a minimum spanning tree method for connecting small gaps resulting from imperfections in imaging or incomplete skeletonization of hyphal networks. Qualitative results are shown for real microscopic data. We believe the comparison of vessel detectors on macroscopic microscopy data, the synthetic vessel generator, and the gap closing technique are beneficial to the image processing community.

Citations (4)

Summary

We haven't generated a summary for this paper yet.