Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Joint Quantile and Expected Shortfall Regression Framework (1704.02213v3)

Published 7 Apr 2017 in math.ST, q-fin.RM, q-fin.ST, and stat.TH

Abstract: We introduce a novel regression framework which simultaneously models the quantile and the Expected Shortfall (ES) of a response variable given a set of covariates. This regression is based on a strictly consistent loss function for the pair quantile and ES, which allows for M- and Z-estimation of the joint regression parameters. We show consistency and asymptotic normality for both estimators under weak regularity conditions. The underlying loss function depends on two specification functions, whose choice affects the properties of the resulting estimators. We find that the Z-estimator is numerically unstable and thus, we rely on M-estimation of the model parameters. Extensive simulations verify the asymptotic properties and analyze the small sample behavior of the M-estimator for different specification functions. This joint regression framework allows for various applications including estimating, forecasting, and backtesting ES, which is particularly relevant in light of the recent introduction of ES into the Basel Accords.

Summary

We haven't generated a summary for this paper yet.