Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Achilles' Heel of Term-Resolution (1704.01071v1)

Published 4 Apr 2017 in cs.LO

Abstract: Term-resolution provides an elegant mechanism to prove that a quantified Boolean formula (QBF) is true. It is a dual to Q-resolution (also referred to as clause-resolution) and is practically highly important as it enables certifying answers of DPLL-based QBF solvers. While term-resolution and Q-resolution are very similar, they're not completely symmetric. In particular, Q-resolution operates on clauses and term-resolution operates on models of the matrix. This paper investigates what impact this asymmetry has. We'll see that there is a large class of formulas (formulas with "big models") whose term-resolution proofs are exponential. As a possible remedy, the paper suggests to prove true QBFs by refuting their negation ({\em negate-refute}), rather than proving them by term-resolution. The paper shows that from the theoretical perspective this is indeed a favorable approach. In particular, negation-refutation can p-simulates term-resolution and there is an exponential separation between the two calculi. These observations further our understanding of proof systems for QBFs and provide a strong theoretical underpinning for the effort towards non-CNF QBF solvers.

Citations (9)

Summary

We haven't generated a summary for this paper yet.