Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multiplicity and concentration of solutions for fractional Schrödinger systems via penalization method (1704.00604v4)

Published 3 Apr 2017 in math.AP

Abstract: The aim of this paper is to investigate the existence, multiplicity and concentration of positive solutions for the following nonlocal system of fractional Schr\"odinger equations \begin{equation*} \left{ \begin{array}{ll} \varepsilon{2s} (-\Delta){s}u+V(x)u=Q_{u}(u, v) &\mbox{ in } \mathbb{R}{N}, \varepsilon{2s} (-\Delta){s}v+W(x)v=Q_{v}(u, v) &\mbox{ in } \mathbb{R}{N}, u, v>0 &\mbox{ in } \mathbb{R}{N}, \end{array} \right. \end{equation*} where $\varepsilon>0$ is a parameter, $s\in (0, 1)$, $N>2s$, $(-\Delta){s}$ is the fractional Laplacian, $V:\mathbb{R}{N}\rightarrow \mathbb{R}$ and $W:\mathbb{R}{N}\rightarrow \mathbb{R}$ are positive continuous potentials, $Q$ is a homogeneous $C{2}$-function with subcritical growth. In order to relate the number of solutions with the topology of the set where the potentials $V$ and $W$ attain their minimum values, we apply penalization techniques, Nehari manifold arguments and Ljusternik-Schnirelmann theory.

Summary

We haven't generated a summary for this paper yet.