Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Gradient Flows in Uncertainty Propagation and Filtering of Linear Gaussian Systems (1704.00102v4)

Published 1 Apr 2017 in math.OC and cs.SY

Abstract: The purpose of this work is mostly expository and aims to elucidate the Jordan-Kinderlehrer-Otto (JKO) scheme for uncertainty propagation, and a variant, the Laugesen-Mehta-Meyn-Raginsky (LMMR) scheme for filtering. We point out that these variational schemes can be understood as proximal operators in the space of density functions, realizing gradient flows. These schemes hold the promise of leading to efficient ways for solving the Fokker-Planck equation as well as the equations of non-linear filtering. Our aim in this paper is to develop in detail the underlying ideas in the setting of linear stochastic systems with Gaussian noise and recover known results.

Citations (17)

Summary

We haven't generated a summary for this paper yet.