2000 character limit reached
Noncommutative rigidity (1703.10599v3)
Published 30 Mar 2017 in math.AG, math.AT, math.KT, and math.RT
Abstract: In this article we prove that the numerical Grothendieck group of every smooth proper dg category is invariant under primary field extensions, and also that the mod-n algebraic K-theory of every dg category is invariant under extensions of separably closed fields. As a byproduct, we obtain an extension of Suslin's rigidity theorem, as well as of Yagunov-Ostvaer's equivariant rigidity theorem, to singular varieties. Among other applications, we show that base-change along primary field extensions yields a faithfully flat morphism between noncommutative motivic Galois groups. Finally, along the way, we introduce the category of n-adic noncommutative mixed motives.